A novel parallel framework for pursuit learning schemes
نویسندگان
چکیده
منابع مشابه
Continuous and Discretized Generalized Pursuit Learning Schemes
A Learning Automaton is an automaton that interacts with a random environment, having as its goal the task of learning the optimal action based on its acquired experience. Many learning automata have been proposed, with the class of Estimator Algorithms being among the fastest ones. Thathachar and Sastry [24], through the Pursuit Algorithm, introduced the concept of learning algorithms. Their a...
متن کاملA Comparison of Continuous and Discretized Pursuit Learning Schemes
A Learning Automaton is an automaton that interacts with a random environment, having as its goal the task of learning the optimal action based on its acquired experience. Many learning automata have been proposed, with the class of Estimator Algorithms being among the fastest ones. Thathachar and Sastry [23], through the Pursuit Algorithm, introduced the concept of learning algorithms that pur...
متن کاملParallel computation framework for optimizing trailer routes in bulk transportation
We consider a rich tanker trailer routing problem with stochastic transit times for chemicals and liquid bulk orders. A typical route of the tanker trailer comprises of sourcing a cleaned and prepped trailer from a pre-wash location, pickup and delivery of chemical orders, cleaning the tanker trailer at a post-wash location after order delivery and prepping for the next order. Unlike traditiona...
متن کاملa framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran
the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...
15 صفحه اولGraphLab: A New Framework For Parallel Machine Learning
Designing and implementing efficient, provably correct parallel machine learning (ML) algorithms is challenging. Existing high-level parallel abstractions like MapReduce are insufficiently expressive while low-level tools like MPI and Pthreads leave ML experts repeatedly solving the same design challenges. By targeting common patterns in ML, we developed GraphLab, which improves upon abstractio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2017
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2016.09.082